Linear Motion Notes

- Motion is Relative
- You move \qquad relative to the floor, but 30 km/sec relative to the Sun.

If you drive at 60 mph and pass a car going 45 mph , your speed relative to the other car is \qquad $?$

- \quad Speed $=$ \qquad
\qquad Speed is the speed at any one moment.
Speed is the speed for the time of the whole trip (total distance / time).
- Velocity is the \qquad and the \qquad of an object in motion.
- Does a car on a circular track going $\mathbf{2 0} \mathbf{m p h}$ have a constant velocity?
- Can a car on a circular track going at a constant speed have a constant velocity?
- Acceleration is the change in velocity over time.
- Acceleration $=$ change in \qquad / \qquad
- Remember that change in velocity can be a change in \qquad or \qquad .
- Galileo's Inclined Planes

○ Galileo put bells on a track at distances 1, 4, 9, 16. When a ball rolling down the track hit each bell they sounded as if keeping a steady beat. Why? \qquad
○ How to calculate Velocity (if you know acceleration and time).
$\mathbf{a}=\mathbf{v} / \mathbf{t} \quad$ so \ldots
$\mathrm{v}=$ \qquad

- How to calculate Distance (if you know acceleration and time).
$\mathbf{v}=\mathbf{d} / \mathbf{t} \quad$ so \ldots
$\mathbf{d}=\mathrm{v} \mathbf{t} \quad$ and therefore...
$d=(a t) t \quad \ldots$ but since the velocity goes from 0 to the final v, the average velocity is $1 / 2$ the final velocity, ... so ...
d = \qquad
- Free Fall
- If an object is falling in a gravitational field, then the acceleration is due to Gravity and the formula above becomes ...
d = ... where \mathbf{g} is the gravitational acceleration (either $10 \mathrm{~m} / \mathrm{sec} 2$ or $32 \mathrm{ft} / \mathrm{sec} 2$).
\bigcirc Since $v=a t$, and $a=g=10 \mathbf{m} / \sec _{2}$, a free falling object increases in speed \qquad m / sec each sec.

Linear Motion Worksheet

- Motion is Relative
- Convert 30 km/sec to mph.

○ If you drive at 60 mph and pass a car backing up at $5 \mathbf{m p h}$, your speed relative to the other car is
\qquad mph?

- Speed $=$ distance / time

○ A cheetah can run $\mathbf{1 0 0} \mathbf{~ m}$ in about $\mathbf{4} \mathbf{s e c}$. How fast is this in mph?
○ Another cheetah runs $\mathbf{5 0} \mathbf{~ m}$ in $\mathbf{2}$ sec. Is he/she [faster, slower, the same]?
○ My daughter and I biked from the Mississippi River to the West Coast (about 1,000 miles). What Average Speed would we have to go to get there in $\mathbf{2 0}$ days if we rode $\mathbf{5}$ hours a day?

- Velocity is the speed and the direction of an object in motion.
- A car goes $\mathbf{3 0}$ miles in $\mathbf{1} \mathbf{2}$ hour. What is the velocity in $\mathbf{m p h}$?

○ How far can I drive in three days averaging 40 mph? Can I make it cross country (3,000 miles)?

- Acceleration is the change in velocity over time.
- Acceleration $=$ change in velocity / time
$\bigcirc \quad$ What is my acceleration if I'm going $32 \mathrm{ft} / \mathrm{sec}$ after $\mathbf{1}$ second's time; but I'm going $64 \mathbf{f t} /$ sec after 2 second's time?
- How fast is a penny going if I drop it from an airplane and it falls for $\mathbf{3}$ seconds?
- Galileo's Inclined Planes
- Galileo put bells on a track at distances $1,4,9,16$. What is a second way to test out this $1,4,9,16 ?$
- How to calculate Velocity (if you know acceleration and time). v = a t So, how fast are you going at the end of one minute if you had a rocket engine that could accelerate you 12 mph per sec?
- How to calculate Distance (if you know acceleration and time). $\mathbf{d}=\mathbf{1} / \mathbf{2}$ a \mathbf{t}_{2} So, how far has a turtle gone if it is accelerating 2 mph per hour if he starts out at 6AM and travels till noon?
- Free Fall
$\bigcirc \quad d=1 / 2 \mathbf{g}$ t2 $\quad .$. where \mathbf{g} is the gravitational acceleration (either $10 \mathrm{~m} / \mathrm{sec} 2 \mathrm{or} 32 \mathrm{ft} / \mathrm{sec} 2$). So, how tall is a building that makes a penny fall four seconds to reach the ground?

○ Since $v=a t$, and $a=g=10 \mathrm{~m} / \mathrm{sec} 2$, a free falling object increases in speed $10 \mathrm{~m} / \mathrm{sec}$ each sec. So, how fast in $\mathbf{m} / \mathbf{s e c}$ is a sky diver going 10 seconds after jumping out of the plane? What are some factors that can affect this? What will happen, eventually?

