Electric Current

	_				
_	Re	17/1	Δι	A.	•
•	\mathbf{r}		CV	w	ı

·=- ·
: inverse square law, depends on two bodies, has constant, f = Gm ₁ m ₂ / d ₂ .
: inverse square law, depends on two <i>charges</i> , has constant, $f = kq_1q_2 / d_2$.
is measured as: 1 coulomb = 6.25 x 10 ₁₈ electrons
The electric $\underline{}$: is force per charge, which is E. It has <i>magnitude</i> and <i>direction</i> . [$E = f / q$
Electric Energy is due to the location of a charge. Electric potential is voltage.
Electric potential = electric potential energy / charge. [1 volt = 1 / 1]

Current = Electric Flow (measured in *amperes* or *amps*: "a")

- _____ flows when there is a potential difference between the two charges.
- o 1 _____ = 1 ____ / ____

Voltage = Electric Potential (measured in *volts*: "v")

- o Sources: piezoelectric (grill lighters), chemical (batteries), biological (us, electric eels), heat (bimetals)
- o Voltage is like electrical _____ or an electrical _____ .
- o 1_____ = 1_____ / 1_____
- Resistance = just what it says ... Electrical (measured in *ohms*: " Ω ")
- Ohm's Law: current (I) = voltage (E) / resistance (R) ... or amperes (a) = volts (v) / ohms (Ω) ... or $\Gamma I = E / RI$

Current	Effect
0.001a	can be felt
0.005a	painful
0.010a	muscle spasms
0.015a	lose muscle control
0.070a	if through heart, probably
	fatal if more than 1 sec

- **Direct vs. Alternating Current**

 - DC _____ ... AC back & forth
 we generally use _____ v, 60Hz AC (where Hz are Hertz or cycles)
 - Many circuits convert AC to DC using _____ especially personal electronics.
- Power = how much electricity you are using

- **Circuits**
 - o _____ ... in one line
 - o _____ ... in parallel lines
 - o _____ ... a home is usually many parallel circuits for safety.
 - o ... in addition, fuses or circuit breakers turn off high currents (15 or 20a)