- Review:
\qquad : inverse square law, depends on two bodies, has constant, $\mathbf{f}=\mathbf{G m}_{1} \mathbf{m}_{2} / \mathbf{d}_{2}$.
\qquad : inverse square law, depends on two charges, has constant, $f=\mathbf{k q}_{1} q_{2} / \mathbf{d}_{2}$.

The electric \qquad : is force per charge, which is E. It has magnitude and direction. $[E=f / q]$

- Electric \qquad Energy is due to the location of a charge. Electric potential is Electric potential = electric potential energy / charge. [1 volt = 1 \qquad / 1 \qquad]
- Current $=$ Electric Flow (measured in amperes or amps: "a")
- ___ flows when there is a potential difference between the two charges.
- 1 \qquad = 1 \qquad /
- Voltage $=$ Electric Potential (measured in volts: " v ")
- Sources: piezoelectric (grill lighters), chemical (batteries), biological (us, electric eels), heat (bimetals)
- Voltage is like electrical \qquad or an electrical \qquad .
- 1 \qquad = 1 \qquad / 1 \qquad
- Resistance = just what it says ... Electrical \qquad (measured in ohms: " Ω ")
- Ohm's Law:

Current	Effect
$\mathbf{0 . 0 0 1 a}$	can be felt
$\mathbf{0 . 0 0 5 a}$	painful
$\mathbf{0 . 0 1 0 a}$	muscle spasms
$\mathbf{0 . 0 1 5 a}$	lose muscle control
$\mathbf{0 . 0 7 0 a}$	if through heart, probably fatal if more than 1 sec

- Direct vs. Alternating Current
- DC - \qquad ... AC - back \& forth
we generally use \qquad v, $\mathbf{6 0 H z}$ AC (where Hz are Hertz or cycles)
- Many circuits convert AC to DC using \qquad - especially personal electronics.
- Power = how much electricity you are using
Power (P) = \qquad (I) x (E) ... watts (w) =
(a) x \qquad (v)... [$\mathrm{P}=\mathrm{I}$ *E]

- Circuits

\qquad ... in one line
\qquad ... in parallel lines
\qquad ... a home is usually many parallel circuits for safety.
\qquad in addition, fuses or circuit breakers turn off high currents (15 or 20a)

