- What is Energy

\qquad is perhaps the most central idea to all of Physics.

- The universe is made of \qquad and \qquad .
- Historically energy was debated as of the \qquad (not known by Newton).
- Difficult to define, \qquad is both a thing and a process.
- A thing in \qquad waves - a process when it holds \qquad together.
- Work
- FORMULA: \qquad = \qquad x \qquad $[\mathbf{W}=\mathrm{fd}]$. UNITS:
- Force is in \qquad ($\mathbf{1 N}=\mathbf{1 k g ~ m} / \mathrm{sec}_{2}$)
- Distance is in
- Work is in \qquad ($\mathbf{1 j}=1 \mathrm{~N} \mathrm{~m}=1 \mathrm{~kg} \mathrm{~m} / \mathrm{mec}_{2}$)
- EXAMPLE: weight lifters do \qquad joules of work; a kg of gas does \qquad joules of work.
- Power
- FORMULA: \qquad = \qquad / \qquad [Power = W/t].
- UNITS: 1 \qquad $=1$ joule $/ \mathrm{sec}$, or $1 \mathrm{horsepower}=750$ watts
- EXAMPLE: a $\mathbf{1 3 3}$ horsepower engine is a $\mathbf{1 0 0} \mathbf{~ k W}$ engine).
- Mechanical Energy ... Potential Energy (PE) versus Kinetic Energy (KE)
- Potential is due to \qquad - Kinetic is due to \qquad .
- Potential Energy is the \qquad work - Kinetic Energy is \qquad work.
- UNITS: Energy is measured in joules - just like work.
- FORMULA: \qquad = \qquad x \qquad , so [PE = wt h].
(Sometimes $\mathrm{PE}=\mathbf{m g h}$, where mg is mass x gravitational acceleration. Newtons or pounds are a force that already has g built in.)
- FORMULA: \qquad $=1 / 2$ \qquad \mathbf{x} \qquad 2, so [$\mathrm{KE}=1 / 2 \mathrm{mv}_{2}$]
- Work - Energy Theorem ... Work is the change in kinetic energy. [W = $\mathbf{~ K K E}$] Derivation:
- Since $\mathbf{W}=\mathbf{f d}$
- from Newton's 2nd Law: $\mathbf{f}=\mathbf{m a}$, so $\mathbf{W}=\mathbf{f d}$ becomes $\mathbf{W}=\mathbf{m a d}$
- since $\mathbf{d}=1 / 2$ at 2 , therefore $\mathrm{fd}=\mathbf{m a d}$ becomes $\mathrm{fd}=\mathbf{m a}(1 / 2$ at $\mathbf{2})=1 / 2 \mathbf{m}(\mathrm{at})_{\mathbf{2}}$
- since $a=\Delta v / t$, then $\Delta v=$ at, therefore $1 / 2 \mathrm{~m}(\text { at })_{2}$ becomes $1 / 2 \mathrm{~m} \Delta v_{2}$
- so $\mathrm{fd}=\Delta \mathbf{1 / 2} \mathbf{~ m v 2}$, that is $\mathbf{W}=\Delta K E$
- The Law of Conservation of Energy

Energy can be converted from one form to another, but it cannot be created or destroyed.

- What is a Machine?

○ A machine is a device that can either multiply a force or simply change its direction. work input = work output $\quad . . \quad$ (force x distance) ${ }^{\text {in }}=$ (force x distance) out
○ The Efficiency of a machine = (useful energy output) / (total energy input)

