CALCULATIONS

Motion Calculations I

- Velocity ... [v = d/t]
- Acceleration ... [$\mathrm{a}=\Delta \mathrm{v} / \mathrm{t}]$
- Distance ... [d=1/2at2]
- Momentum ... [$\mathbf{P}=\mathrm{mv}$]

1. How fast is a rocket going in $\mathbf{m p h}$ if it travels at $\mathbf{9 0} \mathbf{f t}$ in $\mathbf{6} \mathbf{s e c}$?
2. What is the acceleration of a thrown baseball while it is in the hand of the pitcher and goes from $\mathbf{0} \mathbf{~ m p h}$ to $\mathbf{9 0} \mathbf{~ m p h}$; and he performs his pitch in $1 / 2$ second?
3. How tall (in meters) is a building from which a penny is dropped, if it falls $\mathbf{3}$ seconds before hitting the ground?
4. How far down (in meters) does a penny go in 1 second if dropped from a rocket that is traveling at a horizontal velocity of $\mathbf{3 , 0 0 0} \mathbf{~ k m} / \mathbf{h r}$?
5. How fast will a rock be going when it hits the ground if you throw it straight up at 123.26 km/hr?
6. What is the momentum of a 1 ton car moving at $100 \mathrm{~km} / \mathrm{hr}$? How fast would a 4 ton cement truck have to move to have that same momentum?
7. A 5 ton railroad car going at 8 mph links to a stationary 15 ton car. They move slowly down the track after the linkage. How fast are they now going?
8. A big fish eats a small fish. The big fish was going $\mathbf{3} \mathbf{m} / \mathrm{s}$. The little fish was still. $\mathrm{m}_{\text {big }}=5 \mathbf{~ k g}$
mlittle $=\mathbf{1} \mathbf{~ k g}$
What is the net momentum before and after lunch? And what is the velocity of the big fish with the small fish inside it?

PHYSICS

Motion Calculations II

- Velocity ... [v = d/t]
- Acceleration ... [$\mathrm{a}=\Delta \mathrm{v} / \mathrm{t}]$
- Distance ... [d = $1 / 2 \mathrm{a} \mathrm{t}_{2}$]
- Momentum ... [P = mv]

9. What is the speed of light in m / s if it is $186,000 \mathrm{mph}$?
10. What is the acceleration of an object that has $V_{i}=36.2 \mathrm{~km} / \mathrm{s}, \mathrm{Vf}_{\mathrm{f}}=\mathbf{9 8 . 7} \mathbf{~ k m} / \mathrm{s}$, and a time of 32.5 s ?
11. How far does an object in free fall go in $8.3 \mathbf{s}$ if it starts at rest?
12. A 656 g clay object is going a $75 \mathrm{~cm} / \mathrm{s}$. It collides with a second clay object that weighs 426 g and they stick together. How fast are they now going?

- Velocity ... [v = d/t]
- Acceleration ... $[a=\Delta v / t]$
- Distance ... [d = $\left.1 / 2 \mathrm{a} \mathrm{t}_{2}\right]$
- Momentum ... [$\mathbf{P}=\mathrm{mv}$]

13. How fast is an object going in mph if it travels at $\mathbf{1 3 1} \mathbf{f t}$ in $\mathbf{5 . 3 0}$ seconds?
velocity in mph = \qquad
14. What is the acceleration of an object if it goes from 0.0 mph to $\mathbf{8 0} \mathbf{~ m p h}$ in. $\mathbf{3 0}$ second?
acceleration $=$ \qquad
15. How high is a building (in meters) if one drops a nickel and it falls $\mathbf{1 5 . 3 5}$ seconds before hitting the ground?
distance from earth $=$ \qquad
16. A rocket is traveling at a horizontal velocity of $3,333.33333333333333 \mathrm{~km} / \mathrm{hr}$. How far down (in meters) will an object go if it is dropped from the rocket and it falls 8.30000000000000000 seconds miraculously without air friction?
distance $=$ \qquad
17. How fast will a pebble be going when it is caught at the exact height from which it was thrown, if a thrower throws it straight up at 77.7777 km/hr?
pebble velocity = \qquad
18. Crash dummy \#1 is driving a 1,500 kg car at $123 \mathrm{~km} / \mathrm{hr}$. Crash dummy \#2 is driving a $6,800 \mathrm{~kg}$ cement truck. How fast will Crash dummy \#2's truck have to move to have the same momentum?

Crash dummy \#2's truck's velocity = \qquad
19. A 14 ton railroad car is traveling at 100 mph . It links to a stationary 36 ton car. They move slowly down the track after the linkage. How fast are they now going?

The railroad car plus the linked car's velocity = \qquad
20. A large fish going $5 \mathrm{~m} / \mathrm{s}$ eats a small, still fish.
$\mathrm{m}_{\mathrm{big}}=5 \mathrm{~kg}$
mlittle $=1 \mathbf{k g}$
What is the net momentum? And what is the final velocity?
net momentum $=$ \qquad final velocity $=$ \qquad

PHYSICS

Energy Calculations

- Work ... [W = fd]
- Power ... [Power = W/t]
- Potential Energy ... [PE = wt h]
- Kinetic Energy ... [KE = 1/2 mv2]
- Work - Energy Theorem ... [W = $\mathbf{\Delta K E}$]

21. A power lifter lifts a $\mathbf{3 0 0}$ pound barbell $\mathbf{2 . 3}$ meters off the ground ($\mathbf{1} \mathbf{l b}$ is about 4.45 Newtons). How much work did she do in joules ($1 \mathrm{j}=\mathbf{1} \mathrm{Nm}$)?

Work = \qquad j
22. What is the power of a 500 horsepower truck in kiloWatts? Remember that $\mathbf{1}$ horsepower $=$ 750w.

Power = \qquad kW
23. How much potential energy does a 63.8 N rock have if it is on a cliff that is $\mathbf{4 5 0 . 2 \mathrm { m }}$ above the valley floor? Remember that $\mathbf{1 j}=\mathbf{1 N m}$.

PE = \qquad j
24.a) How much work is done carrying a 75N bowling ball horizontally across the room for 10m? b) How about lifting it 1.27m?
a) $\mathbf{W}=$ \qquad j
b) $\mathbf{W}=$ \qquad j
25.a) How much kinetic energy in joules does a 1.45 kg ball thrown at $35.5 \mathrm{~m} / \mathrm{s}$? b) How about 0.1 kg bullet shot at $894.08 \mathrm{~m} / \mathrm{s}$?
a) $K E=$ \qquad j
b) $K E=$ \qquad j
26.a) How much work in joules does a 907 kg car exert in slowing down from $\mathbf{2 5} \mathbf{~ m} / \mathrm{s}$ (which is about 90 km/hr or 60 mph) to $8.3 \mathrm{~m} / \mathrm{s}$ (which is about $30 \mathrm{~km} / \mathrm{hr}$ or 20 mph)? b) Since the formula [$K E=1 / 2 \mathrm{mv}_{2}$] has velocity being squared, how much more stopping distance will the car need at $\mathbf{9 0} \mathbf{~ k m} / \mathrm{hr}$ compared to $\mathbf{3 0} \mathbf{~ k m} / \mathrm{hr}$?
a) $\mathrm{KE}=$ \qquad j
b) stopping distance of \qquad times more

Motion/Energy Calculations

- Velocity ... [v = d/t]
- Acceleration ... [$\mathrm{a}=\Delta \mathrm{v} / \mathrm{t}]$
- Distance ... [d=1/2at2]
- Momentum ... [$\mathbf{P}=\mathrm{mv}$]
- Work ... [W = fd]
- Power ... [Power = W/t]
- Potential Energy ... [PE = wt h]
- Kinetic Energy ... [$K E=1 / 2 \mathrm{mv} 2$]
- Work - Energy Theorem ... [W = $\mathbf{\Delta K E}$]

27. How fast is a rocket going in $\mathbf{~ m p h}$ if it travels at $\mathbf{1 2 0} \mathbf{f t}$ in $\mathbf{6} \mathbf{~ s e c}$?
\qquad mph
28. A weight lifter lifts a $\mathbf{4 0 0}$ pound barbell $\mathbf{2 . 3}$ meters off the ground ($\mathbf{1} \mathbf{~ I b}$ is about $\mathbf{4 . 4 5}$ Newtons). How much work did he do in joules ($\mathbf{1 j = 1 N m) \text { ? }}$

Work = \qquad
29. What is the acceleration of a thrown baseball while it is in the hand of the pitcher and goes from $0 \mathbf{m p h}$ to $\mathbf{9 5} \mathbf{~ m p h}$; and he performs his pitch in $1 / 2$ second?
30. How tall (in meters) is a building from which a penny is dropped, if it falls 4 seconds before hitting the ground?
31. What is the power of a $\mathbf{5 0 0}$ horsepower truck in kiloWatts?

Remember that $\mathbf{1}$ horsepower $=750 \mathbf{w}$.

Power = \qquad kW
32. How far down (in meters) does a penny go in $\mathbf{3}$ seconds if dropped from a rocket that is traveling at a horizontal velocity of $\mathbf{2 , 2 3 8} \mathbf{~ k m} / \mathrm{hr}$?
33. How much potential energy does a 53.8 N rock have if it is on a cliff that is 550.8 m above the valley floor? Remember that $\mathbf{1 j}=\mathbf{1 N m}$.

PE = \qquad
34. How fast will a rock be going when it hits the ground if thrown straight up at

125.36 km/hr?

35. What is the momentum of a $\mathbf{1}$ ton car moving at $\mathbf{1 0 0} \mathbf{~ k m} / \mathrm{hr}$? How fast would a 4 ton cement truck have to move to have that same momentum?
36. a) How much work is done carrying a 64 N bowling ball horizontally across the room for $\mathbf{1 0 m}$? b) How about lifting it $\mathbf{1 . 8 8 m}$?
a) $\mathbf{W}=$ \qquad j
b) $\mathbf{W}=$ \qquad j
37. a) How much kinetic energy in joules does a 2.45 kg ball thrown at $45.5 \mathrm{~m} / \mathrm{s}$ have? b) How about 0.1 kg bullet shot at $794.28 \mathrm{~m} / \mathrm{s}$?
a) $K E=$ \qquad j
b) $K E=$ \qquad
38. A big fish eats a small fish. The big fish was going $\mathbf{3} \mathbf{m} / \mathrm{s}$. The little fish was still.
$\mathbf{m b i g}_{\text {big }} \mathbf{5} \mathbf{~ k g}$
mlittle $=1 \mathbf{k g}$
What is the net momentum before and after lunch? And what is the velocity of the big fish with the small fish inside it?
39. What is the speed of light in m / s if it is $\mathbf{1 8 6 , 0 0 0} \mathbf{~ m p h}$?
40. What is the acceleration of an object that has $\mathrm{v}_{\mathrm{i}}=\mathbf{3 6 . 2} \mathbf{~ k m} / \mathrm{s}, \mathrm{vf}=\mathbf{9 8 . 7} \mathbf{~ k m} / \mathrm{s}$, and a time of $32.5 \mathbf{s}$?
41. a) How much work in joules does a 800 kg car exert in slowing down from $\mathbf{2 4 . 8} \mathbf{~ m} / \mathrm{s}$ to $4.8 \mathrm{~m} / \mathrm{s}$?
b) Since the formula [$K E=1 / 2 \mathrm{mv} 2$] has velocity being squared, how much more stopping distance will the car need at $80 \mathrm{~km} / \mathrm{hr}$ compared to $20 \mathrm{~km} / \mathrm{hr}$?
a) $K E=$ \qquad j
b) stopping distance of \qquad times more
42. A 656 g clay object is going a $\mathbf{7 5} \mathbf{~ c m} / \mathrm{s}$. It collides with a second clay object that weighs $\mathbf{4 2 6} \mathbf{g}$ and they stick together. How fast are they now going?
43. A rocket is traveling at a horizontal velocity of $\mathbf{3 , 3 3 3 . 3 3 3 3 3 3 3 3 3 3 3 3 3 3 ~ k m / h r . ~ H o w ~ f a r ~}$ down (in meters) will an object go if it is dropped from the rocket and it falls 8.3 seconds miraculously without air friction?
distance $=$ \qquad
44. How fast will a pebble be going when it is caught at the exact height from which it was thrown, if a thrower throws it straight up at 77.7777 km/hr?
pebble velocity $=$ \qquad
45. Crash dummy \#1 is driving a $1,500 \mathrm{~kg}$ car at $123 \mathrm{~km} / \mathrm{hr}$. Crash dummy \#2 is driving a $6,800 \mathrm{~kg}$ cement truck. How fast will Crash dummy \#2's truck have to move to have the same momentum?

Crash dummy \#2's truck's velocity $=$
46. A 14 ton railroad car is traveling at 100 mph . It links to a stationary $\mathbf{3 6}$ ton car. They move slowly down the track after the linkage. How fast are they now going?

The railroad car plus the linked car's velocity =

