PHYSICS

Rotational Motion

	Motion WHEFLS
Does	the outside horse on a merry go round go faster than the inside horse?
0	Speed — along a line (outside horse faster)
0	Speed — along a tangent line (while going in a circle) (outside horse faster)
0	Speed – (or angular speed) rotation (or revolution) per time (both horses same)
0	Interesting Fact: Railroad wheel flanges do not keep wheels on the tracks. They stay because of
	taper.
	ject rotating about an axis tends to remain rotating about that same axis unless acted by an outside force. It depends on and
0	It depends on and
0	It depends on and Examples: Balance Tightrope Bar; Crouched: runner, tumbler, or skater; balanced sledge
Torq	ue (rotational counterpart of force)
Try to	hold a rod in a horizontal position as you slide a weight toward the far end.
0	= length of x
0	Examples: ancient scales using a balance, car engine torque, torque wrench, tire iron
Cent	er of & Center of (only different if very large and gravity varies)
	Examples: centroid on a triangle, throwing knife, Leaning Tower of Pisa, try to touch your toes
	with back against the wall
0	Locating the Center of Gravity: hang object from 2 points — where plum bob lines intersect.
	Force
0	Any force directed toward a fixed center is called a centripetal force.
0	, , , , , , , , , , , , , , , , , , , ,
0	FORMULA: $[f = mv_2/r]$
0	Examples: car tires staying on a ramp
	Force (It's not really a force – it's inertia!)
0	We call the inertia of wanting to go outward from a circle – while being pulled into a circle,
	centrifugal force. What we are really feeling is an equal and opposite to the centripetal force
	pulling us toward center and the tangential speed (which would take us on a straight line
	tangent to the circle.) Of course, these two add up to feeling pushed outward from the center of
	the circle.
0	Examples: clothes dryer spins off water, gravity simulation for future space stations
	Momentum
	ke linear momentum (mass x velocity), angular momentum depends on mass and velocity, but
	n the radius of curvature.
	FORMULA: [L = mvr]
	Angular momentum goes by the ' rule'.
0	Examples: Gyroscope, bicycle or motorcycle wheels