PHYSICS

Projectile Motion Quiz

	An object that is projected without gravity being present – just goes straight. projected objects in gravity curve downwards.
0	projected objects in gravity go straight up, then straight down.
0	projected objects in gravity curve upwards, then downwards.
0	The curve (trajectory) in pure projectile motion (if only gravity is acting) is always a [y = x2]!
0	Question: Which hits the ground first, a bullet fired or a bullet dropped simultaneous to the firing? 7*
In W\	Bertha WI this gun was found by following the of her projectile motion.
	ulating Projectile Motion
0	Horizontal distance comes from v = d/t, so [].
	Vertical distance is, as you know [], or approximately d = 5t ₂ .
0	Question: How far below its straight line trajectory will Big Bertha's cannonball be after 2 sec? 9* m
0	Question: If Big Bertha's horizontal component of velocity is 30 m/sec, how far across the ocea
	will the cannonball be after 5 sec? 10* m
0	Question: How fast a projectile launched horizontally from a 5m high platform if it went 40 m
	before hitting the ground? 11* m/sec
	mum Range of a Projectile is 12* °
	use Earth's curvature is 5m drop for 8km distance and since it takes 1 sec for an object to fall 5m, ject traveling 8km/sec can stay in orbit. This is about 18,000 mph and would even burn up iron.
Kepl	er's Laws of Planetary Motion
I.	Planets move in 13*, with the Sun at one focus.
II.	The line from the Sun to any planet sweeps out equal areas in equal times.
III.	[], where T is time period for a revolution and R is planet's average distance
sun.	
Why	is the escape velocity also the <i>maximum falling speed</i> ?